

Aura Science Meeting Data Systems Working Group HIRDLS SIPS Sept. 13, 2006

Vince Dean, Brendan Torpy, Greg Young Univ. of Colorado, Boulder

Cheryl Craig
NCAR

Overview

- We use big iron for science processing large, multiprocessor machines.
- We use a small PC cluster for SIPS data management and user interface.
- We share resources between development and production (SCF and SIPS).
- We support experimental runs in production environment, carefully tracked.
- Some versions have been released to DAAC and AVDC, others in internal review.
- Proliferation of processor versions leads to considerable manual book-keeping and stresses the system design.
- DAAC evolution: technical interfaces work, still leaving concern about changes in semantics and metadata.

Big Iron for processing—shared by production and development

Name	Use	Vendor	CPUs	Memory (Gbytes)	Architecture	os
hir1 <being retired=""></being>	Development and Production	SGI	32	52	MIPS	lrix
hal	Development	SGI	12	24	Itanium	SUSE Linux
hcl	Mostly Production	SGI	80	160	Itanium	SUSE Linux
<new></new>	Development and backup Production	SGI	32	64	Itanium	SUSE Linux

PC Cluster for SIPS Data Management

- Five commodity PCs
- Fedora Linux
- Java
- Open source tools
 - Ant
 - JBoss
 - MySQL
 - Struts
 - ...

Processing Rate

- Process one day, end-to-end, in 9 hours.
- Effective throughput, running parallel jobs:
 - One day processed every 2 hours
 - 12x processing
 - 2 years re-processed in ~2 months

Goddard DAAC Evolution

- DAAC is generally honoring existing interfaces for distributions and has been responsive to our requests.
- Passed mini-MOSS test, ingesting GEOS-5 data from S4PA.
- Lack of "database ID" in distribution notice has required some reprogramming.
- Are there other changes in semantics waiting for us??
- Metadata
 - Fewer explicit requirements.
 - Revaluate scope of metadata—what will users need?

Experimentation in SIPS

- HIRDLS obstruction required a new round of highly experimental development.
- We have chosen to install <u>many</u> experimental processors in our SIPS system and have run many one-off tests.
- The automation and audit trail have been indispensable for that work.
- QA plots and comparisons with other products are generated automatically.
- We have been able to handle the large number of experimental versions, but it requires considerable manual book-keeping.
- We plan enhancements to simplify data management.

Data and Processor Versioning

- Versions of our data products are distinguished by:
 - Association with processor versions that created them
 - Naming conventions:
 - · 2.00, 2.01, etc.
 - Suitable for release to outside users--GES DISC, and/or AVDC.
 - · 2.02.01, 2.02.02, etc.
 - Internal, development versions.
- Versions of external products are harder to track. Strategies include:
 - Newest is best—ignore old versions.
 - Generally suitable for level 0 data, attitude and ephemeris.
 - New file type for each new version of external data.
 - We are using this for MLS products, to distinguish v1.5 from v2.1.
- Work in progress.

Scientists as SIPS users

- SIPS was designed to ingest files, run production jobs and deliver results to the DAAC, with the operator as the primary user.
- Science users find SIPS useful to:
 - Track experimental jobs
 - View QA plots
- Generally well received, in spite of complex user interface.

Agile Development

- Two developers maintaining 100,000+ lines of code, with agile practices, including:
 - Frequent releases
 - Extensive unit tests
- We are able to respond to:
 - need for experimental runs
 - changes for DAAC evolution

Data Releases

- Version 2.00
 - Delivered 27 days of L2 data to Goddard DISC and AVDC.
- Version 2.01
 - Delivered additional 10 days L2 data to AVDC.
- Processing remains experimental, for selected day of interest from each new software version.
- We do not yet have plans for wholesale reprocessing.
- HIRDLS Documents at Goddard DISC on Aura documentation page:
 - A short guide to the use and interpretation of V2.00 Level 2 data.
 - Data Description and Quality -- Version 2.00
- http://daac.gsfc.nasa.gov/Aura/documentation/index.shtml

Scan Tables

- HIRDLS instrument has used four different scan patterns (scan tables) since January 2005, each one designed to allow us to compensate better for the obstruction.
 - ST 30 January 21 ... April 28, 2005
 - ST 13 April 28, 2005 ... April 24, 2006
 - ST 22 April 24 ... May 4, 2006
 - ST 23 May 4, 2006 ...
- Recent versions of the de-oscillation code have custom features for each scan table. Each of several recent releases has added the ability to handle one more scan table.

Version 2.00

- Installed in June, 2006
- Recent versions of de-oscillation code are customized for each scan table.
- Handles only scan table 23.
 - ST 23 May 4, 2006 ...
- Delivered 27 days L2 data to AVDC and Goddard DAAC
 - All scan table 23
 - May 4 .. 31, 2006
 - except May 23 pitch up

Version 2.01

- Installed in July, 2006
- Adds ability to process scan table 22
 - ST 22 April 24 ... May 4, 2006
 - ST 23 May 4, 2006 ...
- Processed and delivered 10 additional days L2 data to AVDC
 - All scan table 22
 - April 25 ... May 4, 2006

Version 2.02

- Installed in August, 2006
- Adds improvements to cloud detection algorithms
- Handles scan tables 22 and 23
 - ST 22 April 24 ... May 4, 2006
 - ST 23 May 4, 2006 ...
- Processed 47 selected days of interest from
 - Scan tables 22 and 23
 - Spanning April 25 ... August 12, 2006

Version 2.02.02

- Installed in September, 2006
- Adds support for scan table 13
 - ST 13 April 28, 2005 ... April 24, 2006
 - ST 22 April 24 ... May 4, 2006
 - ST 23 May 4, 2006 ...
- Processed 27 additional days of interest
 - Scan table 13.
 - Spanning May 5, 2005 ... April 30, 2006

Version 2.02.03

- Installed in September, 2006
- Adds support for scan table 30
 - ST 30 January 21 ... April 28, 2005
 - ST 13 April 28, 2005 ... April 24, 2006
 - ST 22 April 24 ... May 4, 2006
 - ST 23 May 4, 2006 ...
- Processed 12 additional days of interest to coincide with PAVE mission.
 - Scan table 30
 - May 5, 2005 ... April 30, 2006